0=16t^2+80t+20

Simple and best practice solution for 0=16t^2+80t+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=16t^2+80t+20 equation:



0=16t^2+80t+20
We move all terms to the left:
0-(16t^2+80t+20)=0
We add all the numbers together, and all the variables
-(16t^2+80t+20)=0
We get rid of parentheses
-16t^2-80t-20=0
a = -16; b = -80; c = -20;
Δ = b2-4ac
Δ = -802-4·(-16)·(-20)
Δ = 5120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5120}=\sqrt{1024*5}=\sqrt{1024}*\sqrt{5}=32\sqrt{5}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-32\sqrt{5}}{2*-16}=\frac{80-32\sqrt{5}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+32\sqrt{5}}{2*-16}=\frac{80+32\sqrt{5}}{-32} $

See similar equations:

| 0=16t^2+80t+20 | | 4Y-9=x²+2x | | 4Y-9=x²+2x | | (x+4)*Y=200 | | (x+4)*Y=200 | | 47d=35 | | 4-4*4+8=x | | 4-4*4+8=x | | 4-4*4+8=t | | 4-4*4+8=t | | -43+x=-102 | | x•87=100 | | x•87=100 | | x•87=100 | | x•87=100 | | x•87=100 | | 6^7x=360 | | (X)=2.15(2x2-4x-6) | | (X)=2.15(2x2-4x-6) | | 44x-17=10 | | -15x+-17=-19 | | -15x+-17=-19 | | -15x+-17=19 | | 15x+-17=19 | | 15x+-17=19 | | 15x+-17=14 | | 15x+-17=14 | | 1/5(3x-0.5)+1/6=1/5x+0.5 | | 1/5(3x-0.5)+1/6=1/5x+0.5 | | -8x+7=20 | | -8x+77=25 | | -8x+77=25 |

Equations solver categories